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ABSTRACT 

A theoretical  investigation i s  described which analyzes the effect 

of an inhomogeneous sheath on the surface cu r ren t s  excited on an infinitely 

long, perfectly conducting, c i rcu lar  cylinder immersed  in an isotropic 

coll isionless,  compressible  plasma by plane electromagnetic (EM) and 

electrokinetic (EK) waves incident at an a rb i t r a ry  angle with respec t  to 

the cylinder axis .  

with the inhomogeneous sheath taken to extend a finite distance into the 

p lasma f rom the cylinder surface,  on the o rde r  of 10 electron Debye 

lengths, beyond which the plasma is uniform. 

the sur face  cu r ren t s  obtained f rom the inhomogeneous sheath analysis 

a r e  compared.with those obtained when the sheath is replaced by a f r ee -  

space  region, called the vacuum sheath. 

incidence, the surface cur ren ts  a r e  practically independent of the sheath 

and the finite plasma temperature .  

an attenuating effect on the cur ren ts  produced, compared with the sheathless  

case ,  with the attenuating effect of the vacuum sheath being grea te r  than 

that of the inhomogeneous sheath. 

The l inearized fluid equations a r e  used in the analysis,  

The numerical  resu l t s  for  

It is found that for  EM wave 

For E K  wave incidence, the sheath has  

v i i  



1. Introduction 

The effect of a finite plasma temperature  (warm plasma, as op- 

posed to the z e r o  temperature  o r  cold plasma) on the propagation of e lec t ro-  

magnetic (EM) waves in a plasma medium is a subject which is of cu r ren t  

in te res t .  

wave may be wholly accounted for  by a suitable permitt ivity which is a 

function of the plasma pa rame te r s .  

port  in addition to the E M  wave, an electron p r e s s u r e  wave, o r  the electro-  

kinetic (EK) wave. 

p lasma inhomogeneity and a t  bounding sur faces  of the plasma, so that the 

p lasma permittivity for  the EM wave is by itself no longer sufficient to 

determine the effect of the plasma on EM waves propagating in i t .  

and EK waves may a l so  be coupled by external  magnetic fields and non-linear 

effects.  

due to gradients in the static electron number density (inhomogeneity coup- 

ling), and to plasma boundaries (boundary coupling). 

In the c a s e  of the cold plasma the effect of the plasma on the EM 

The warm plasma can however, sup- 

This E K  wave may couple to the EM wave in regions of 

The EM 

The coupling mechanisms to be considered in this paper wi l l  be those 

The specific problem to be considered is an investigation of the 

su r face  cu r ren t s  which a r e  excited on an infinitely long, c i rcu lar ,  per -  

fectly conducting cylinder by plane EM and E K  waves. 

f o r  th i s  interest  in the surface cur ren ts .  

whether it may be feasible to detect the presence of the E K  wave in the 

p l a sma  by a measurement  of the surface cur ren t  it may excite on the cylin- 

d e r .  

su r f ace  cur ren t  a s  a resu l t  of coupling to  the EM wave. 

t e r e s t  is the effect  of coupling to  the EK wave on the cu r ren t s  excited 

by the  EM wave. 

The re  a r e  two reasons  

(1) It is of value to determine 

Since the E K  wave itself has  no magnetic field, it  can only excite a 

(2) Also of in- 

The EK wave can, for  example l e a d  to coupling between 

1 



the t ransverse-electr ic  (TE) and t r ansve r se  -magnetic (TM) polarizations 

of the E M  wave scat tered f rom a cylinder in a warm plasma, whereas 

such coupling does not occur in the cold plasma. 

of inhomogeneity coupling and boundary coupling on the cu r ren t s  due to 

both the EK and EM wave wi l l  be examined, a s  well as the effects of the 

var ious plasma parameters .  

The relat ive influence 

The l inearized hydrodynamic equations w i l l  be used to account fo r  

the medium behavior of the plasma, together with Maxwell's equations. 

While the frequency range over which the hydrodynamic approach is relia- 

ble is confined to  a r a the r  nar row interval about the electron plasma fre-  

quency, it is sufficient for the present  problem. We a r e  concerned in the 

analysis  with frequencies ( f )  above the plasma frequency ( fp)  and below the 

frequency where Landau damping becomes important,  roughly f i  fp,  s ince 

the hydrodynamic approach does not account f o r  Landau damping. 

e r i ca l  resu l t s  will be presented for  N=f / f = O .  7 only because of the t ime 

consuming nature  of the calculations. 

The num- 

P 

2. Formulation of the Problem 

We take the infinitely long, perfectly conducting, c i r cu la r  cylinder 

to  be oriented with i t s  axis coincident with the z -ax is  of the cylindrical  co-  

ordinate system ( p ,  cp , z ) .  The cylinder is allowed to  acquire  i t s  floating 

potential in  the plasma, i. e . ,  i t s  potential is determined by the plasma 

parameters  such as electron tempera ture  and ion m a s s ,  s o  that the net 

cur ren t  flowing to it is zero .  A s  a resul t ,  the cylinder has a negative PO- 

tential with respect  to  the plasma, and a n  inhomogeneous sheath fo rms  about 

it in which there is a defeciency of e lec t rons .  This  inhomogeneous sheath 

2 



extends out into the plasma, for practical  purposes,  up to  20 e lectron 

Debye lengths (D L )  f rom the cylinder surface,  beyond which charge neu- 

t ra l i ty  is near ly  res tored .  Consequently, a s  shown in Fig. 1, the plasma 

is divided into 2 regions.  

to  be spatially uniform, while the region between the sheath-uniform plasma 

interface (sheath interface) and cylinder surface,  c <  < s, compr ises  the 

inhomogeneous sheath, which is thus taken to  be of finite thickness. 

cause of the axial and azimuthal symmetry,  the s ta t ic  sheath var iables  a r e  

functions of the radius p only. We will, for purposes of comparison, p re -  

sent some resu l t s  for  the c a s e  where the sheath region is replaced by a 

f ree  -space layer ,  which separa tes  the cylinder f rom the uniform plasma.  

This will be called the vacuum sheath model, and the situation where the 

sheath is of ze ro  thickness w i l l  be called the sheathless  case .  

In the outer region, p > s, the plasma is taken 

Be-  

The equations f rom which the t ime-varying or dynamic field quanti- 

t i es  in the plasma wi l l  be obtained a r e  the usual l inearized hydrodynamic and 

Maxwell's equations. These equations, af ter  separation of var iables  and 

with an eiot t ime dependence, l e a d  to the following se t  of f i r s t  o rder ,  ordin- 

a r y  differential  equations (Miller and Olte, 1966b). 



. .  

NORMAL CROSS - SECTION OF CYLINDER 

4 



with 
cu 2 = e n / ~ m = ( 2 a f )  2 2 

P 0 0  P 

E =  E E o r  
2 L = e E /mvr  

0 0 

H F )  is given by 

while 

I h l  + 1 + + 
[ -VxHn + imeo En] L vn = - 

en  
0 

The subscr ipt  n, an  integer, is the azimuthal separation constant, p 

is the z separation constant, the pr ime denotes differentiation with respec t  to 

the radial  variable,  and the superscr ipt  denotes the f ie ld  component. 

t ime varying electr ic  and magnetic fields and electron velocity a r e  represent -  

The 

ed  by E, H, and V respectively, the s ta t ic  e lectr ic  

density are given by Eo and n and Q is related to 

number density n1 by 

0’ 

f ie ld  and electron number 

the t ime varying electron 

Finally, -e and m a r e  the electron charge and mass ,  v is the rms electron 

velocity, and c0 and p 

We may note that a closed form solution to the sys tem of equations [ 13 is 

in genera l  not possible for  Eo # 0, i. e . ,  in the sheath. 

t ions exist  of course  for  the uniform plasma. 

r 

are the permittivity and permeability of f ree  space.  
0 

Analytic solu- 

5 



In o rde r  to  complete this s e t  of equations, we requi re  a description 

f o r  the static sheath f r o m  which n and Eo are found, as well as the fields 

of the incident plane wave and the boundary conditions to  be applied. 

obtain E and n as follows: 

0 

We 

0 0 

Eo = - v#o 

0 00 

= n  exp PI 
with 0 

parameter  which will have a value of 2 for  the numerical  r e su l t s  to  be p r e -  

the cylinder potential f rom an expression due to  Self (19631, M a 

sented, k Boltzmann's constant, T the electron temperature ,  m .  the ion 

m a s s  and n A d is -  

cussion of the applicability of using [ 23 to  descr ibe  the s ta t ic  sheath is given 

by Mil ler  (1966) and so  wi l l  not be pursued here .  

1 

the s ta t ic  e lectron density in the uniform plasma. 
00 

The fields of the incident and sca t te red  waves in the uniform plasma 

can be obtained from potentials (Hansens method) involving Four ie r  s e r i e s  

of cylindrical Besse l  functions and Hankel functions of the second kind re -  

spectively. 

t ransverse  electr ic  (TE),E(  = 0,and t r a n s v e r s e  magnetic (TM),H( = 0 ,  

polarizations, and use  the subscr ip ts  e , m  and p to  differentiate quantities 

associated with the TE, TM and EK waves respectively.  In the r e su l t s  to  

follow, the incident plane waves wi l l  have unit potential amplitude. 

We decompose the incident and sca t te red  E M  waves into the 

z) Z) 

The 

boundary conditions required to be sat isf ied a t  the sheath interface a r e  con- 

tinuity of the tangential e lec t r ic  field, the tangential magnetic field, the 

normal  electron velocity and the t ime varying e lec t ron  density. At the 
6 



. .  

cylinder surface,  the tangential e lectr ic  field is requi red  to  be ze ro  due 

to  the infinite conductivity of the cylinder. These requirements  produce 8 

s c a l a r  boundary condition equations, while 9 such equations a r e  necessary, 

since in addition to  the 6th order  differential equation [ 11, the scat ter ing 

coefficients of the TE,  T M  and E K  waves in the uniform plasma a r e  requi r -  

ed. The one remaining boundary condition to  be used wi l l  be an admittance 

relation between the normal  electron velocity and t ime varying electron 

number density at  the cylinder surface,  of the kind introduced by Cohen 

(1962). These boundary conditions may  be expressed in separated f o r m  as, a t  

D = s :  

N J = o  k?n) plasma - (5) sheath 

= o  [ 3d1 (Qn) plasma - (Qn) sheath 

and at p = c: 

= o  [4a1 (En) sheath 

[ 4bl 

N N 

p . ( V  ) sheath = YB(Qn) sheath 
N N n  

where Y is the surface admittsfice. Ir? solving [ 11, w e  eljrninate the 

F o u r i e r  scattering coefficients of the fields in the uniform plasma, and so 
B 

reduce the number of s ca l a r  boundary condition equations above f rom 9 to 

6 equations involving the 6 field quantities whose derivatives appear in [ 11. 

It may be observed in [4b] that for ze ro  surface admittance ( Y  = 0), the B 

e lec t rons  a r e  elastically scat tered f rom the cylinder surface,  a situation 

descr ibed in acoustics as a hard  boundary. If on the other hand, the s u r -  

face admittance is infinite, then all the incident e lectrons a r e  absorbed, a 

situation which is r e f e r r e d  to  a s  a soft boundary. Since there  is no coupling 

7 



between the EM and E K  waves a t  a soft boundary (Miller and Olte, 1966a), 

the l a t t e r  ca se  is of interest  since then the surface cu r ren t s  excited by the 

E K  wave w i l l  be due to inhomogeneity coupling alone. The hard boundary 

however leads to  surface cu r ren t s  excited by the E K  wave due to both in- 

homogeneity and boundary coupling. consequently, a comparison of r e su l t s  

for  both the hard and soft boundaries allows us  to obtain an idea of the relative I 
importance of the inhomogeneity and boundary coupling mechanisms between I 

the E K  and E M  fields. 

This  s e t  of boundary condition equations together with the differential 

Note that the surface c u r -  equations [ l]  constitute the problem to be solved. 

rents ,  the quantities of p r imary  interest ,  a r e  obtained f rom the tangential 

magnetic field a t  the cylinder surface.  In the next section we d iscuss  br ief ly  

the method of solution. 

3 .  Method of Solution 

a .  Gene r a1 Discuss ion 

The set of ordinary f i r s t  o r d e r  different ia l  equations [ 11 together 

with the scalar boundaqy conditions [3] and [4] applied a t  the cylinder sur- 

face and sheath interface constitutes a two-point boundary value problem, 

as opposed to the initial value problem where the boundary condition equa- 

tions a r e  applied a t  a single value of the independent var iable .  While the 

initial value problem may be handled in a relatively straightforward way 

numerically, the boundary value problem is considerably m o r e  involved. 

This is because in the initial value problem the information required to  

calculate the s tar t ing values of a l l  the dependent var iab les  is given a t  a 

single point. 

the derivatives there  and the integration is s ta r ted  by a s tandard technique 

Consequently, the differential  equations can  be used to evaluate 



such as Runge-Kutta, for example, and the unique solution which sat isf ies  

the boundary conditions is obtained. In the boundary value problem how- 

ever ,  there  a r e  fewer boundary condition equations than dependent var iables  

a t  any one boundary. A s  a resul t ,  no mat te r  a t  which boundary the integration 

is begun, there  is insufficient information to determine the s tar t ing values 

of all the dependent var iables  a t  that boundary. This missing information 

is contained in the boundary condition equations a t  the second boundary, 

which cannot be utilized however until the integration has  been ca r r i ed  out 

to  the second boundary. 

This  difficulty is overcome in a straightforward way, a t  the expense 

of a considerable increase  in computer t ime compared with the initial value 

problem. 

two se t s .  

The procedure followed is to divide the dependent var iables  into 

The var iables  in the first set ,  equal in number to the number of 

boundary condition equations a t  the boundary A where the integration is 

s ta r ted ,  a r e  the "known" var iables ,  whose s tar t ing values a r e  determined 

f r o m  the boundary condition equations. The var iables  in the second se t  a r e  

the "unknown" variables,  and are  assigned a rb i t r a ry  s tar t ing values in o r d e r  

to  begin the integration. Denote the known variables  by y i = 1, . . . , J i' 

and the unknown variables  by xi, i = 1, . . . , I where J -t I is the total number 

of dependent var iables .  The se t  of differential equations [ 11 then constitute a 

t ransformation relating the derivatives f i = 1, . . . , I + J of the dependent 

var iab les  to  the dependent variables themselves,  a s  

i' 

I + J  
c 51 

( p )  is determined explicit ly by the differential equation and 
where T i j  

Z ~ ( ~ ) = X ~ ( ~ )  ; i =  1, . . . ,  I 
( p ) ;  i = I + l ,  . . . ,  I + J  Y i - 1  

9 



The boundary condition equations at the s ta r t ing  boundary A may be writ ten 

J + I  
Si(A) = A..z . (A) ;  i = 1, . . . ,  J 

j = i  1 J 1  
c 6a 1 
where Si(A) is the contribution of the source,  i f  any, (in our  case, the in-  

cident wave) a t  boundary A .  Similarly at the boundary B where the integration 

is terminated 

J + I  
Si(B) = c B..z . (B)  ; i = 1, . . . , I 

j = i  1 J J  

where the total number of s c a l a r  boundary condition is thus equal to  the 

number of f i r s t  o rde r  differential equation to  be solved. Thus [ 6a ] provides 

a relationship from which the J known variables  y.(A) can be found in t e r m s  

of the I unknown variables  xi(A) a t  the s ta r t ing  boundary A .  
1 

We a l so  observe that the s ta r t ing  values of all the der ivat ives  fi(A) 

a t  boundary A may be written in  t e r m s  of the xi(A). F r o m  [sa]  we get 

where 

a -  i j  - Ai, j+I 

-1 
a =(a)  i j  i j  

i, j =  1, . . . ,  J 

N 

andA..is the JxI submatr ix  of A..which r ema ins  a f te r  removing aij 
13 1J 

j = 1 ,  . . . ,  I 

Then using [ 5 ] and [7a ]  we obtain 
T 

with 

fi(A) = 'c 
"1. (A) = T..  (A)  - c 

T: .  (A) x j  (A) i SIi (A); i= 1, . . . , I + J 
j =  1 13 

c. J J  CI 

tik (A) Zkl Al j  1J 1J k = l  1=1 
I 

si (A)  = c .c t . . (A)  Zjk Sk (A)  
k = l  j = 1  1J 

10 



where t = Ti, j+I i j  i = l ,  . . . ,  I + J  

j = 1 ,  . . . ,  J 

i = l ,  . . . ,  I + J  

j = 1, . . . ,  I 

We note that in  obtaining the s ta r t ing  values of the derivatives 

f .(A) f rom [7b] , the boundary condition equations [ 6a3 a r e  satisfied regard-  

less of the values assigned to  the xi(A). The problem now is to find the co r -  

r ec t  s ta r t ing  values for the x.(A) which lead to the unique solution that will 

sat isfy [6b] as wel l  a s  [sa] .  The co r rec t  s tar t ing values x.(A) which resu l t  

in satisfying both [ 6a] and [6b J a r e  obtained a s  follows: 

1 

1 

1 

F i r s t  choose a se t  of values X..(A) for  x. a t  A, with j = 1, denoting 
1J 1 

this t o  be the f i r s t  s e t  of xi to be s o  specified. 

writ ten for  the s tar t ing values F . . ( A )  in the form 

It follows that [7b] can be 

1J 
I 

F..(A) = T: x . (A); i = l ,  . .  ., I + J 
j =  1 ik kJ 

1J k= 1 

The integration can now be ca r r i ed  out to  boundary B where the values 

Z il ( B )  and F il ( B )  a r e  obtained. Unless our  choice for  Xil ( A  ) has 

been extremelyfortuitous, however, [6b] will not be satisfied by the value 

of Zil(B) which resul ts .  

If we  now repeat this process  with other s e t s  of values X..(A), j=2  11 
. . . , I and form the l inear  combination 

I 
zi(B) = c.Z. . (B)  ; i=1, . . ., I + J 

j =  1 J 11 

then [6b] provides 

1 

the I equations from which the c .  can be found. Thus 
J 

I 
c = c m.. S. (B);  j = 1  . . . ,  I 
j i=l  ~1 J 

11 



I+J 
where 

cab1 

and 

[ 91 

The c o r r e c t  s tar t ing values of x. a t  boundary A a r e  then given by 
1 

I 
xi(A) = C c .X. .(A) 

j = 1  J 1J 

and the unique solution to the problem may be obtained by a final 

integration using 

o r  a combination 

[ l o  1 

In most  

I 

j' 
but now with S i  (A) S.' (A) 2 c C 7 q  1 

of the previously calculated values Z .  .( p )  
1J 

I 

problems of interest ,  such a s  sca t te r ing  by an obstacle o r  

the radiation from a source,  one of the source  vectors  Si(A) o r  Si(B) will be 

zero.  

In that case [8] w i l l  not be applicable. If, however, one integration is p e r -  

It may be convenient to integrate in the direction which makes Si(B)=O. 

formed with the X.(A)=O, which as shown by [ 7b ] is not a t r ivial  case ,  since 
1J 

S.(A) is then non ze ro  and we  denote this integration with j=o,  then 
1 

T 

[ill 

where 

- 1 

c . =  M..SI (B) 

Si (B) = - 

J i= l  J1 1 
1 I+J c BijZjo(B) 

j=  1 

The c .  a r e  then found in t e r m s  of Z ( B ). Since Z ( B ) is proportional 

to  the source s t rength Si(A) a t  A, we see that the c .  obtained are  proportional 

to  Si(A), in a s imi l a r  fashion to [8] where the c .  a r e  proportional to  Si(B). 

J j o  j o  

J 

J 
The j s e t s  of s ta r t ing  values X..(A) may be chosen a rb i t r a r i l y  with 

1J 

the rest r ic t ion that 
I 
C Q X..(A) = 0 

j 1~ 

J 1J 
have only the tr ivia I= solution a .  = 0 .  This  requirement  that the X. .(A) be 

l inearly independent follows f r o m  8b ] that  the mat r ix  Mij have a r e  inverse.  
12 



A disadvantage of the numerical  solution of the boundary value 

problem compared with the initial value problem is thus seen  to  be  the nec- 

ess i ty  for  performing the numerical  integration of the J + I differential  

equation a total  of I t 1 t imes.  

las t  t ime is required fo r  the final answer.  ) The computation t ime is thus 

(I t imes  a r e  required to evaluate c .  and the 
J 

made at least  I + 1 times as great  for the fo rmer  problem. Consequently, 

it is advantageous to begin the integration at the boundary where I has  the 

smaller value. 

It is a l so  apparent for  a given integration step-size,  that the r e su l t s  

obtained fo r  the boundary value problem cannot be expected to  be as accurate  

as those obtained for  the initial value problem. This  is due to  the fact that 

the accuracy of the s tar t ing values x.(A) is dependent upon the precis ion 

with which the I integration can be performed and the matr ix  [8b] inverted. 

While each individual integration can be performed with the same relative 

1 

accuracy,  the e r r o r s  accumulate in the mat r ix  inversion and this  can in  some 

c a s e s  lead to  e r r o r s  in the c .  coefficients of much l a rge r  magnitude than 

those a r i s ing  f r o m  the integration. 
J 

b. Application to the Problem Under Consideration 

If the scat ter ing coefficients for  the fields in the uniform plasma a r e  

eliminated in the boundary condition equation [ 31, the sheath field quantities 

E ( p )  E ( T )  E(z) (tp), and H r )  a r e  the only dependent var iables  ap- n *  n '  n ' Q n " n  

pear ing in them. The re  wi l l  then be th ree  boundary condition equations at  

each  boundary, so that  I = J = 3 regard less  a t  which boundary the integration 

begins. Thus the var iables  E?), E?), and E('), were used a s  the se t  of n 

n 
i- 1 known variables ,  while Qn, H,'P and H(') were the unknown variables.  

13 



A 4th o r d e r  Runge-Kutta method was used to  obtain the f i r s t  th ree  

points in the solution. Then a 4th o rde r  pred ic tor -cor rec tor  method due to  

Hamming (see Ralston, 1965, p. 189) was utilized, to  continue the integra-  

tion. 

with each variable w a s  obtained as discussed by Ralston (1965, p. 203). If 

the e r ro r  bound associated with any var iable  was found to be larger than the 

des i red  minimum accuracy, there  were two options which could be followed. 

The predictor-corrector  routine could be i terated,  as many t imes  as nec- 

e s s a r y  to  decrease  the error-bound below the desired level, assuming the 

i terated values converged, o r  the integration s tep-s ize  could be decreased. 

It w a s  found that i f  one i teration of the pred ic tor -cor rec tor  routine was in- 

sufficient to produce the desired dec rease  in the e r r o r ,  i t  was more  effic- 

ient to halve the integration s tep-s ize .  This involves again using the Runge- 

Kutta method to s e t  up the required values of the var iables  for  the predictor-  

co r rec to r  routine for  the new s tep  s ize .  

e r r o r  bounds were  smaller than the maximum des i red  accuracy,  then fo r  

reasons  of economy, the s tep-s ize  w a s  doubled. Otherwise, the integration 

s tep-s ize  was left unchanged. 

At each integration point, a n  est imate  of the e r r o r  bound associated 

If on the other  hand, all of the 

The integration routine w a s  programmed so that the integration could 

be s ta r ted  at e i ther  the sheath interface o r  cylinder sur face .  

tions were car r ied  out with the cylinder potential 0 = 0, i. e. the sheath- 

less case ,  in o r d e r  to compare the accuracy  of the numer ica l  integration 

with the analytic solutions that can be obtained in this c a s e  (Miller and Olte, 

1966a). It w a s  found that the numerical  integration produced r e su l t s  for  the 

sur face  cur ren t  in agreement  with the analytic solution to 3 o r  4 significant 

f igures when the integration w a s  begun a t  the sheath interface,  for  an EK 

Some calcula- 

C 
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i o  = 9 measured f rom the positive z axis.  wave at  an angle of incidence 8 

This accuracy could be obtained for  sheath thicknesses on the o r d e r  of 

10D 

no thicker than 10Di .  

o r  less ,  so  that the resu l t s  to be presented a r e  res t r ic ted  to sheaths 
R 

When the integration was  begun at  the cylinder surface however, the 

numerical  integration resu l t s  for the sur face  cu r ren t  were generally unre-  

liable. 

a r e  evanescent, decaying exponentially with increasing radius,  and the inte - 

gration, in o r d e r  to accurate ,  should proceed in the direction of increasing 

field magnitude. For EM wave incidence, and for  E K  wave incidence at  an 

angle such that radially propagating EM fields a r e  produced, the integration 

could be begun a t  e i ther  the sheath interface a cylinder surface with 3 t o  4 

figure agreement  with the analytic solution. 

This occurs  s ince the E M  fields, for  this angle of EK wave incidence, 

The most  obvious s e t  of s tar t ing values X. . (A) is the identity matrix.  

However, it w a s  found in pract ice  that the error-bounds associated with the 

var iab les  with a s ta r t ing  value of zero  were generally l a r g e r  than that of 

the var iable  with the s ta r t ing  value of unity. 

not physically rea l i s t ic  for example, to have both Qn and 

the s ta r t ing  boundary. 

2 ' s  on the diagonal and 1's elsewhere.  

double precis ion (16 places) to obtain the c 

var ia t ion in the sheath was obtained from [ l o ] ,  i. e . ,  by s tor ing the resu l t s  

of each  separa te  integration. This  was done, r a the r  than performing the 

integrat ion a final t ime, since the values fo r  c .  a r e  less accurately known 
J 

than the Z .  .( p ), s o  that the e r r o r s  i n  the final zi( p )  are kept on the o r d e r  of 

the e r r o r s  in the c .  r a the r  than becoming fur ther  increased a s  a resul t  of the 

1J 

This may indicate that it is 

equal to  0 at 

Thus the matr ix  of s ta r t ing  values X..(A) used had 
1J 

The matr ix  Mij was inverted in 

The final values for the field 
j '  

1J 

J 



final integration. 

the final integration step.  

This a l so  shortens the computation t ime by eliminating 

4. Numerical Results 

a. Incident E K  Wave 

In figs. 2 and 3 a r e  shown the magnitudes of the 9 and z compon- 

ents of surface cu r ren t  excited by the EK wave, K") and K"), for an angle 

of incidence Qi  of go and a sheath thickness X, of 5 Dr . There  are two 

curves  on the graphs, one each for  the soft and the hard boundary. The 

ver t ical  scale is a m p e r e s / c m  and the horizontal scale,  showing the azimuthal 

angle c p ,  runs f rom 0 to 180 only, since the cu r ren t s  a r e  symmetr ic  in cp. 

The cylinder potential is -5 .  34 volts, corresponding to a mercu ry  plasma 

(m.=200 atomic mass units)  for  electrons a t  a tempera ture  of lo4 OK, and 

the parameter  M for the s ta t ic  potential, has  a value of 2.  

wave frequency f is 1 G c / s  and the plasma frequency f 

(N = f / f  = 0.7).  

and 

values a s  figures 2 and 3 for var ious vacuum sheath thicknesses.  

P P 

0 0 

1 

The incident 

is 0 . 7  G c / s  P 
F o r  purposes of comparison, Figs. 4 and 5 show K ( c p )  , 

P P 
obtained from the vacuum sheath analysis  for  the same pa rame te r  

P 

(z)  It may be seen in Figs .  2 and 3 that the cu r ren t  magnitude of K 
P 

for  the hard boundary is s imi l a r  t o  that for  the soft boundary but roughly a 

factor of two la rger ,  while K ( T )  shows m o r e  variation between the hard and 

soft boundaries in the behavior a s  a function of c p .  A s  a ma t t e r  of fact, K cp 
P 

fo r  the soft boundary exceeds that for  the hard boundary nea r  the back of 

the cylinder. We  might conclude f rom these cu rves  that the contribution to  

the surface cur ren t  excited by the E K  wave due to  the boundary and inhomo- 

geneity coupling a r e  of near ly  the s a m e  magnitude. 

regard,  that the spat ia l  distribution of n1 is the sheath is dependent upon the 

P 
0 

It should be noted in this  

16 



I o-d 

f = l  Gc/s 

N= 0.7 
c =  0.2 cm 
x= 10 
8' = g o  

T= lo4 OK 

SOFT BOUNDARY 

1? 
I I I I 

0 45 90 135 I80 

Fig. 2: 
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The magnitude of K 0 as a function of azimuthal angle CP for  
i o  the inhomogeneous sheath model, with X = 5 and 8 = 9 . P 



f = l  Gc/s 
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N= 0.7 
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Fig. 3: The magnitude of K(') a s  a function of azimuthal angle rp f o r  
P i o  the inhomogeneous sheath model, with X = 5 and 8 = 9  . 
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value of YB. Consequently, the contributions of both the inhomogeneity 

coupling and boundary coupling to the EK surface cu r ren t  a r e  dependent 

upon YB, s o  that it is difficult to  determine more  accurately their  relative 

importance in this role.  

A comparison of the inhomogeneous sheath cu r ren t s  of Figs. 2 and 

3 with the corresponding vacuum sheath cur ren ts  of Figs.  4 and 5 reveals  

some s imi la r i ty  in the resul ts ,  especially for  K"). 

cu r ren t  for the inhomogeneous sheath (Fig. 3 )  var ies  with azimuthal angle 

cp in a way ve ry  similar to the sheathless case  of Fig. 5, though having a 

magnitude somewhere between the X = 0 and X = 5.case of the vacuum sheath 

cur ren ts .  

cu r ren t  for  the two sheath models is somewhat different, though the inhomo- 

geneous sheath cu r ren t  magnitudes again l ie  roughly between the vacuum 

sheath resu l t s  for  X = 0 and X = 5. These observations are substantially 

in agreement  with resu l t s  presented by Miller and Olte (1966b) for  normal  

E K  wave incidence on an  inhomogeneous sheath, in that the inhomogeneous 

sheath cu r ren t s  f o r  e i ther  the hard o r  soft  boundary can be approximated 

quite well f rom the vacuum sheath model i f  the sheath thickness X is regard-  

ed as a parameter .  

The z component of 
P 

In the c a s e  of the cp component of current ,  thecp variation of the 

Figure 6, which shows the magnitude of K(') fo r  the inhomogeneous 
P 

sheath model, with the same parameter  values a s  for the previous graphs, 

but with the sheath thickness X = 109 , fur ther  i l lustrates  this equivalence 

between the resu l t s  of the vacuum sheath and inhomogeneous sheath cur ren ts .  

A comparison of Figs. 3 and 6 shows that the cur ren t  magnitude for  the hard 

boundary and the lOD, inhomogeneous sheath fluctuates more  with azimuthal 

angle cp and is larger toward the back of the cylinder, than that f o r  the 5DR 



Fig. 4: 

 IO-^^ d 4 5  90 135 I80 

f C#l (degrees) 

The magnitude of K ( c p )  as  a function of azimuthal angle 

the vacuum sheath model with sheath thickness X a pa rame te r  
i and e = 9'. 

for 
P 
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Fig. 6: 
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The magnitude of K(') a s  a function of azimuthal angle  for 
P i o  the inhomogeneous sheath model with X = 10 and e = 9 . 
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thick inhomogeneous sheath, while those for  the soft boundary are  quite 

s imi l a r .  It may also be seen, in comparing Figs. 5 and 6, that the 2D1 

thick vacuum sheath and 10D thick hard boundary, inhomogeneous sheath 

cur ren t  magnitudes a r e  ve ry  similar, as a r e  the soft boundary inhomo- 

geneous sheath and the 5D I 

I 

thick vacuum sheath cu r ren t s  of the same f igures  

The final graphs of this se r ies ,  Figs.  7 and 8, show the magnitude 

of K(') only, f rom the inhomogeneous sheath model for  a sheath 5D1 thick, 

and the vacuum sheath model for  various sheath thicknesses, for  an  angle 

of incidence ei = 45O. for  

(3 = go, the sof t  boundary cur ren t  exceeds that for  the hard boundary to- 

P 

We note in Fig. 7 that, as in the case  of 
P 

wards the back of the cylinder. 

and inhomogeneity coupling a r e  of nearly the s a m e  importance.  

Consequently, it  appears  that boundary 

In comparing 

the inhomogeneous and qacuum sheath cu r ren t s  of Figs .  7 and 8 the inhomo- 

geneous sheath cu r ren t s  are generally bracketed between the X = 2 and 

X = 5 cu r ren t s  for  the vacuum sheath. 

b. Incident EM Wave 

Since the cu r ren t s  excited by the EM wave on a cylinder which is 

sma l l  in  d iameter  compared with the wavelength vary  in a regular  way with 

azimuthal angle g ,  the si taation of interest  here,  we presefit m l y  the maxi- 

mum value of the cu r ren t  magnitude obtained f rom the cp variation a s  a func- 

tion of angle of incidence, in Fig. 9. The T E  and T M  curren ts  are denoted 

respect ively by Kk ) and Km ( ) . Results f r o m  both a vacuum sheath of 

0 and lOD, thickness and an inhomogeneous sheath 20D 

Fig. 9 when the difference between them a r e  la rge  enough to resolve graphi- 

thick a r e  shown in P 

cally.  The o the r ,pa rame te r  values a r e  the s a m e  a s  those in previous graphs.  

We see in Fig.  9 that only the T M  wave produces cu r ren t s  which a r e  appre-  

ciably affected by the presence of the sheath.  

that the vacuum sheath of 10D 

It is interesting to  observe 

thickness appears  to approximate the 20D 
P I 
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Fig. 7: The magnitude of a s  a function of azimuthal angle for 
P i 0 the inhomogeneous sheath model with X = 5 and e =  45 . 
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Fig. 8: The magnitude of K(') as  a function of azimuthal angle rp for  

the vacuum sheath model with sheath thickness X a parameter  

and e i  = 45O. 

P 
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Fig. 9: The maximum cur ren t  magnitudes for  E M  wave incidence as  

a function of angle of incidence 

(X = 0, 10) and the inhomogeneous sheath (X=20) models.  

i e f o r  both the vacuum sheath 
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thick inhomogeneous sheath quite well, a t  l eas t  as far as the surface cu r ren t  

produced by the TM wave is concerned. 

component of TM current ,  K ( c p  ), is increased by the sheath, compared with 

the sheathless case.  

component of cur ren t  on an infinitely conducting cylinder in f ree  space, both 

the sheath vacuum and inhomogeneous and finite plasma temperature  cause  

It should a l so  be noted that the cp 

m 
This occurs  because while the TM wave excites no 

i t s  excitation. Thus increasing the sheath thickness can resul t  

Finally, it  should be mentioned that the vacuum sheath 

were  performed for  EM wave incidence, for  the additional ca se  

plasma, i. e . ,  T = 0, with changes on the o r d e r  of 0. 1 p e r  cent 

in an increase  

calculations 

of the cold 

o r  l e s s  oc-  

cu r r ing  in the cur ren t  magnitudes compared with the warm plasma resu l t s  

shown in  Fig. 9, except for K?). For vacuum sheath thicknesses g rea t e r  

than about 2D1, K 

vacuum sheath thickness w a s  decreased towards zero,  K$ became pro-  

gressively smal le r ,  becoming z e r o  for X = 0 since then both of i ts  excitation 

mechanisms are absent. 

cold p lasma situation is the same  a s  represent ing the vacuum sheath-uniform 

plasma interface as a soft boundary, since then the EM wave does not ccuple 

to an  EK wave. 

0 
m w a s  s imi la r ly  unaffected by sett ing T = 0, but a s  the 

We should note that for EM wave incidence, the 

c .  Comparison of EM and E K  Currents  

It should be recalled that the cu r ren t s  presented above a r e  for  the 

c a s e  of unit amplitude incident plane waves. 

compar ison  of the cur ren ts  produced by the EM and EK waves would s e e m  

to be that  when their  power flow densities a r e  equal. 

Mil ler  and Olte (1966a), the power flow density in the E K  wave of potential 

One reasonable c r i te r ion  for  a 

A s  discussed by 
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amplitude Vi equals that in an EM wave of potential amplitude Vi when 
P e 

v =, 
P a  Kvi e 

where IT is  the velocity of light in f ree  space.  
I 

For the parameter  values used here,  this reduces to 
- 2  i 

Ve Vi = 3.32  x 10 
P 

If we use  this equal power flow cr i ter ion,  we s e e  that the EK cu r ren t s  p r e -  

sented in Figs.  2-8 must  be reduced by almost  2 o r d e r s  of magnitude before  

they can be compared in amplitude with the E M  cur ren t s  of Fig.  9 .  

resu l t  is that only K Z  of the EM cur ren t s  is less than any of the EK c u r -  

rents ,  while the other EM curren t  components are  an o rde r  of magnitude o r  

m o r e  l a rge r  than the E K  cur ren ts .  Consequently i t  appears  that it would be 

difficult to measure  the cur ren t  produced by an  E K  wave in the presence of an  

EM background, an observation reached e a r l i e r  by Miller and Olte (1966a) 

on the basis of the vacuum sheath analysis .  

The 

5.  Comments and Conclusions 

One of the most  interesting aspec ts  of the work reported he re  con- 

c e r n s  a comparison of the inhomogeneous sheath and the vacuum sheath 

resu l t s .  It w a s  pointed out by Miller (1966) that l inear  i nc reases  in the 

vacuum sheath thickness beyond some minimum thickness on the o r d e r  of 

2D1, lead to exponential dec reases  in the sur face  cu r ren t  excited by the 

E K  wave a t  oblique incidence on the infinite cyl inder .  This dec rease  in 

the cur ren t  due to the EK wave is caused by the evanescent EM fields which 

i t  excites at the vacuum sheath-uniform plasma interface.  One drawback of 

the vacuum sheath model is however, that  the p lasma in real i ty  extends to  

the sur face ,  with the resu l t  that any screening  effect  of the r e a l  sheath may 

be exaggerated by the vacuum sheath model.  
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A s  we have seen  in the resul ts  presented above however, the 

vacuum sheath model can produce resul ts  for  the sur face  cu r ren t s  for  ob- 

lique EK wave incidence in good agreement with those of the inhomogeneous 

sheath models used, f o r  a vacuum sheath thickness on the o r d e r  of one-fifth 

to one -half the inhomogeneous sheath thickness. The equivalent vacuum 

sheath thickness is found to depend upon the cylinder surface admittance 

used in the inhomogeneous sheath calculations. For  EM wave incidence, 

the equivalent vacuum sheath thickness appears  to be about one-half the 

inhomogeneous sheath thickness. It thus appears  that, despite i t s  obvious 

physical shortcomings, the vacuum sheath model can  serve auseful  purpose 

in finding the-surface cu r ren t s  excited by EM and EK waves on a plasma- 

immersed  obstacle. 

Pe rhaps  the most  significant finding of the inhomogeneous sheath 

r e su l t s  for EK wave incidence, is the relatively small dependence of the 

cu r ren t  on the surface admittance of the cylinder, showing that the boundary 

coupling and inhomogeneity coupling mechanisms are of near ly  the s a m e  

importance in converting the incident EK wave to a scat tered EM wave. 

is important since the hard boundary is an admitted oversimplification for  

represent ing the interaction of the electrons moving under the influence of 

the wave e lec t r ic  f ie lds  in the plasma with the cylinder surface.  

of the sheath and coupling to  the EK wave has  been found to have a small 

influence on the surface cu r ren t s  excited by the EM wave. 

fur ther  investigation would be comparison of the scat ter ing c r o s s  -section 

of p lasma- immersed  obstacles for the vacuum sheath and inhomogeneous 

sheath models, especially for  a n  incident EM wave. 

This 

The effect 

An area for 
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